Jon
2009-12-05 05:00:24 UTC
Solution to a pentic:
http://jons-math.bravehost.com/penticsoln.html
This shows the steps to derive the formula below.
The root to ax^5+bx+c=0 is,
x = { -c*({a^2+b^2}^(1/2)+a)/(b^2+a*{a^2+b^2}^(1/2)) }^(1/5)
Using this formula, the roots to,
x^5+x-34=0 x=1.888 should be 2
32x^5+4x-3=0 x=0.623 should be 1/2
x^5+x-0.10001 x=0.5887 should be 1/10
http://jons-math.bravehost.com/penticsoln.html
This shows the steps to derive the formula below.
The root to ax^5+bx+c=0 is,
x = { -c*({a^2+b^2}^(1/2)+a)/(b^2+a*{a^2+b^2}^(1/2)) }^(1/5)
Using this formula, the roots to,
x^5+x-34=0 x=1.888 should be 2
32x^5+4x-3=0 x=0.623 should be 1/2
x^5+x-0.10001 x=0.5887 should be 1/10